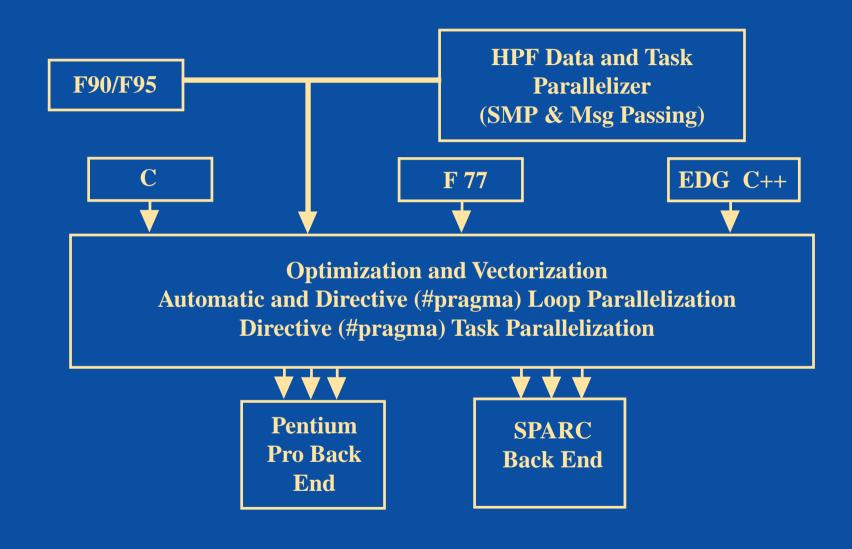

Parallel Software Development Tools For Pentium Pro Systems

The Portland Group, Inc. (PGI) http://www.pgroup.com


Vincent Schuster - CEO vinces@pgroup.com

pre-1997 Unix Compilers

The Portland Group, Inc. (PGI)

1997/1998 Unix & NT Compilers

HPF 2.0 Core

- ♠ Data parallelism can readily be expressed.
- ♠ Well-expressed data mapping hints can help significantly.
- ♠ F95 extensions: FORALL, PURE

HPF 2.0 Extensions

- ♠ non-Task Parallel Extensions
 - ♦ ON HOME, RANGE, SHADOW, GEN_BLOCK, INDIRECT, EXTRINSICS
 - **♦** Asynchronous I/O
- **♠** Task Parallel Extensions
 - ♦ ON, RESIDENT, TASK_REGION, notion of ACTIVE PROCESSOR sets

PGHPF Compiler RoadMap

- **♦** PGHPF 2.2 (March 1997)
 - **♦ InterProcedural Analysis, HPF/CRAFT, SMP HPF.**
- **♦** PGHPF 3.0 (Later 1997)
 - ♦ Native Pentium Pro HPF Compilers, Parallel I/O, Auxiliary HPF Libraries, non-Task Parallel HPF 2.0 Extensions, improve handling of irregular and sparse data (Unix and NT)
- **♦** PGHPF 3.x (Mid 1998)
 - **♦ Task Parallel HPF 2.0 Extensions, Asynchronous I/O**

SMP HPF

- ▲ Each CPU is treated as a separate PROCESSOR node
 - **♦** Native and Non-native implementations
- ♠ Direct memory accesses where beneficial (e.g., indirect arrays)
 - ◆ Data aggregation and vectorization and indirect array schedule creations and reuse often are still useful. Decisions can be made within compiler based on system parameters.
- ♠ Sequence and storage association relaxed
 - *Arrays are partioned in memory substantial reductions in false sharing.
- ♠ Expect to meet or exceed MPI performance in 1997.

DSM HPF

- ♠ Each CPU is treated as a separate PROCESSOR or node.
- ♠ Data movement between nodes is via low level one-way communications, e.g., put() and get ().
- ♠ Cray T3-E Example
 - **♦** Exceeds stringent performance requirements for specified benchmarks
 - **4** Hydro-dynamics codes
 - **♣** Key nuclear simulation codes and kernels
 - * PUT (), GET () one-way communication mechanisms
 - **♣** Lots of irregular array accesses
 - Scaling to 256 nodes
- ▲ SGI Origin and HP Exemplar are prime candidates.

Hybrid Memory

- ▲ Each node consists of multiple SMP CPUs.
- ♠ Access between nodes is accomplished better than other data movement mechanisms.
- ▲ Data locality within each node is ensured due to HPF directive hints.
- ♠ HPF treats each node as a separate "PROCESSOR."
- ♠ SMP parallelization is used within each node using SMP compilation techniques.

Teragon Hybrid

- ♠ PGHPF compiles to move data between nodes.
 PGF77 SMP parallelized the resultant output code.
- ▲ So far, PGI has run one example SHALLOW. It has scaled linearly up to 1085 nodes (2170 CPUs), uses threads to parallelize loops between each pair of node processors.

SMP Node Compiler Features

- **♠** C, C++ and F77
 - ♦ Written in portable C; ported to a multitude of platforms (Unix and DOS)
- ♠ In 1997, F90 and F95 will be native for Pentium Pro and Sparc
- ♠ Optimizer, Vectorizer, SMP Parallelizer, and Code Gen are shared by all the languages.
- ▲ Linux (threadless), Windows NT (later 97), Solaris 86,...
- ♠ PCF-style directives & #pragmas across languages
 - Other spellings in the pipeline
 - **♦ Unified Parallel Programming Model is a goal**

HPF and SMP Parallel Tool Support

♠ Existing

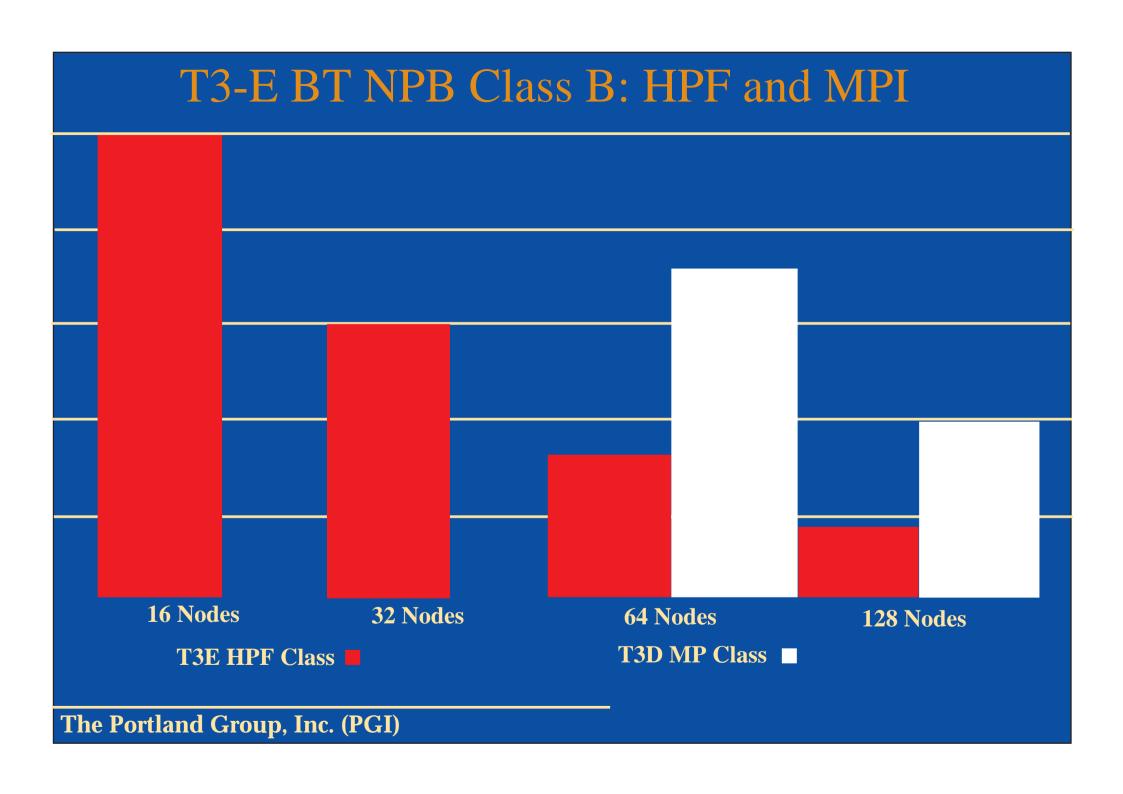
- **♦** PGPROF Post-mortem profiler (message passing statistics)
- **♦** syPABLO Dan Reed @ U of Illinois
- AIMS NASA Ames
- **♦** HPF/MPI Binding Ian Foster @ Argonne facilitates task parallelization
- **♦** TotalView Debugger Dolphin (ex BBN debugger)

♦ 1997+

- **♦ Pentium Pro Parallel Debugger Support**
- **♦** PGPROF Scaling statistics and prediction
- **♦ UNIX and NT Tool support**

Linpack Double Precision

62.9


pgcc - cougar - Mconcur yod-sz 1-proc 2 linpack

pgcc - cougar -02yod-sz 1 linpack 38.1

One CPU

Two CPUs

The Portland Group, Inc. (PGI)

Migration Path Details

♠ UNIX developers migrating to NT

- ♦ Many try Linux or Solaris86 first
- ♦ Want 2-way bridge between parallel RISC and PPro Unix platforms Similar software development toolset would enhance code portability and preserve their existing expertise equity.
- **◆** Predictive performance monitoring tools would be welcome. Predict performance and portability.
- **♦** This appears to be the earlier migration path.

♠ NT developer migrating to Parallel NT

♦ IDE, simple parallel prog model & tools, use NT & classes.

♠ UNIX to NT and Parallel UNIX to Parallel NT

♦ May be most flexible to change but would like to have same SW design toolset across both platforms if they intend on continuing to support codes across both platforms.

Java

▲ Is there an effective web strategy targeting an efficient parallel programming model targeted at HPC users and leveraging the JVM and Java technologies?